109 research outputs found

    Wave exposure as a predictor of benthic habitat distribution on high energy temperate reefs

    Get PDF
    The new found ability to measure physical attributes of the marine environment at high resolution across broad spatial scales has driven the rapid evolution of benthic habitat mapping as a field in its own right. Improvement of the resolution and ecological validity of seafloor habitat distribution models has, for the most part, paralleled developments in new generations of acoustic survey tools such as multibeam echosounders. While sonar methods have been well demonstrated to provide useful proxies of the relatively static geophysical patterns that reflect distribution of benthic species and assemblages, the spatially and temporally variable influence of hydrodynamic energy on habitat distribution have been less well studied. Here we investigate the role of wave exposure on patterns of distribution of near-shore benthic habitats. A high resolution spectral wave model was developed for a 624 km2 site along Cape Otway, a major coastal feature of western Victoria, Australia. Comparison of habitat classifications implemented using the Random Forests algorithm established that significantly more accurate estimations of habitat distribution were obtained by including a fine-scale numerical wave model, extended to the seabed using linear wave theory, than by using depth and seafloor morphology information alone. Variable importance measures and map interpretation indicated that the spatial variation in wave-induced bottom orbital velocity was most influential in discriminating habitat classes containing the canopy forming kelp Ecklonia radiata, a foundation kelp species that affects biodiversity and ecological functioning on shallow reefs across temperate Australasia. We demonstrate that hydrodynamic models reflecting key environmental drivers on wave-exposed coastlines are important in accurately defining distributions of benthic habitats. This study highlights the suitability of exposure measures for predictive habitat modeling on wave-exposed coastlines and provides a basis for continuing work relating patterns of biological distribution to remotely-sensed patterns of the physical environment

    Why do Argos satellite tags stop relaying data?

    Get PDF
    1. Satellite tracking of animals is very widespread across a range of marine, fresh-water and terrestrial taxa. Despite the high cost of tags and the advantages of long deployments, the reasons why tracking data from tags stops being received are rarely considered, but possibilities include shedding of the tag, damage to the tag (e.g. the aerial), biofouling, battery exhaustion or animal mortality. 2. We show how information relayed via satellite tags can be used to assess why tracking data stops being received. As a case study to illustrate general approaches that are broadly applicable across taxa, we examined data from Fastloc-GPS Argos tags deployed between 2012 and 2019 on 78 sea turtles of two species, green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata). 3. Tags transmitted for a mean of 267 days (range 26 - 687 days, median = 251 days, SD = 113 days). In 68 of 78 (87%) of cases, battery failure was implicated as the reason why tracking data stopped being received. Some biofouling of the salt-water switches, which synchronise transmissions with surfacing, was evident in a few tags but never appeared to be the reason that data reception ceased. 4. Objectively assessing why tags fail will direct improvements to tag design, set-up and deployment and across studies regardless of the study taxa. Assessing why satellite tags stop transmitting will also inform on the fate of tagged animals, e.g. whether they are alive or dead at the end of the study, which may allow improved estimates of survival rates

    Benthic habitat mapping in coastal waters of south–east Australia

    Full text link
    The Victorian Marine Mapping Project will improve knowledge on the location, spatial distribution, condition and extent of marine habitats and associated biodiversity in Victorian State waters. This information will guide informed decision making, enable priority setting, and assist in targeted natural resource management planning. This project entails benthic habitat mapping over 500 square kilometers of Victorian State waters using multibeam sonar, towed video and image classification techniques. Information collected includes seafloor topography, seafloor softness and hardness (reflectivity), and information on geology and benthic flora and fauna assemblages collectively comprising habitat. Computerized semi-automated classification techniques are also being developed to provide a cost effective approach to rapid mapping and assessment of coastal habitats.Habitat mapping is important for understanding and communicating the distribution of natural values within the marine environment. The coastal fringe of Victoria encompasses a rich and diverse ecosystem representative of coastal waters of South-east Australia. To date, extensive knowledge of these systems is limited due to the lack of available data. Knowledge of the distribution and extent of habitat is required to target management activities most effectively, and provide the basis to monitor and report on their status in the future.<br /

    Exploring spatiotemporal trends in commercial fishing effort of an abalone fishing zone: a GIS-based hotspot model

    Get PDF
    Assessing patterns of fisheries activity at a scale related to resource exploitation has received particular attention in recent times. However, acquiring data about the distribution and spatiotemporal allocation of catch and fishing effort in small scale benthic fisheries remains challenging. Here, we used GIS-based spatio-statistical models to investigate the footprint of commercial diving events on blacklip abalone (Haliotis rubra) stocks along the south-west coast of Victoria, Australia from 2008 to 2011. Using abalone catch data matched with GPS location we found catch per unit of fishing effort (CPUE) was not uniformly spatially and temporally distributed across the study area. Spatial autocorrelation and hotspot analysis revealed significant spatiotemporal clusters of CPUE (with distance thresholds of 100\u27s of meters) among years, indicating the presence of CPUE hotspots focused on specific reefs. Cumulative hotspot maps indicated that certain reef complexes were consistently targeted across years but with varying intensity, however often a relatively small proportion of the full reef extent was targeted. Integrating CPUE with remotely-sensed light detection and ranging (LiDAR) derived bathymetry data using generalized additive mixed model corroborated that fishing pressure primarily coincided with shallow, rugose and complex components of reef structures. This study demonstrates that a geospatial approach is efficient in detecting patterns and trends in commercial fishing effort and its association with seafloor characteristics

    The effects of an invasive seaweed on native communities vary along a gradient of land-based human impacts

    Get PDF
    The difficulty in teasing apart the effects of biological invasions from those of other anthropogenic perturbations has hampered our understanding of the mechanisms underpinning the global biodiversity crisis. The recent elaboration of global-scale maps of cumulative human impacts provides a unique opportunity to assess how the impact of invaders varies among areas exposed to different anthropogenic activities. A recent meta-analysis has shown that the effects of invasive seaweeds on native biota tend to be more negative in relatively pristine than in human-impacted environments. Here, we tested this hypothesis through the experimental removal of the invasive green seaweed, Caulerpa cylindracea, from rocky reefs across the Mediterranean Sea. More specifically, we assessed which out of land-based and sea-based cumulative impact scores was a better predictor of the direction and magnitude of the effects of this seaweed on extant and recovering native assemblages. Approximately 15 months after the start of the experiment, the removal of C. cylindracea from extant assemblages enhanced the cover of canopy-forming macroalgae at relatively pristine sites. This did not, however, result in major changes in total cover or species richness of native assemblages. Preventing C. cylindracea re-invasion of cleared plots at pristine sites promoted the recovery of canopyforming and encrusting macroalgae and hampered that of algal turfs, ultimately resulting in increased species richness. These effects weakened progressively with increasing levels of land-based human impacts and, indeed, shifted in sign at the upper end of the gradient investigated. Thus, at sites exposed to intense disturbance from land-based human activities, the removal of C. cylindracea fostered the cover of algal turfs and decreased that of encrusting algae, with no net effect on species richness. Our results suggests that competition from C. cylindracea is an important determinant of benthic assemblage diversity in pristine environments, but less so in species-poor assemblages found at sites exposed to intense disturbance from landbased human activities, where either adverse physical factors or lack of propagules may constrain the number of potential native colonizers. Implementing measures to reduce the establishment and spread of C. cylindracea in areas little impacted by land-based human activities should be considered a priority for preserving the biodiversity of Mediterranean shallow rocky reefs

    Applications of unmanned aerial vehicles in intertidal reef monitoring

    Full text link
    Monitoring of intertidal reefs is traditionally undertaken by on-ground survey methods which have assisted in understanding these complex habitats; however, often only a small spatial footprint of the reef is observed. Recent developments in unmanned aerial vehicles (UAVs) provide new opportunities for monitoring broad scale coastal ecosystems through the ability to capture centimetre resolution imagery and topographic data not possible with conventional approaches. This study compares UAV remote sensing of intertidal reefs to traditional on-ground monitoring surveys, and investigates the role of UAV derived geomorphological variables in explaining observed intertidal algal and invertebrate assemblages. A multirotor UAV was used to capture &lt;1&thinsp;cm resolution data from intertidal reefs, with on-ground quadrat surveys of intertidal biotic data for comparison. UAV surveys provided reliable estimates of dominant canopy-forming algae, however, understorey species were obscured and often underestimated. UAV derived geomorphic variables showed elevation and distance to seaward reef edge explained 19.7% and 15.9% of the variation in algal and invertebrate assemblage structure respectively. The findings of this study demonstrate benefits of low-cost UAVs for intertidal monitoring through rapid data collection, full coverage census, identification of dominant canopy habitat and generation of geomorphic derivatives for explaining biological variation

    Geographic distance, water circulation and environmental conditions shape the biodiversity of Mediterranean rocky coasts

    Get PDF
    11 páginas, 2 tablas, 3 figuras.Ecological connectivity is important for effective marine planning and biodiversity conservation. Our aim was to identify factors important in influencing variation in benthic community structure on shallow rocky reefs in 2 regions of the Mediterranean Sea with contrasting oceanographic regimes. We assessed beta (β) diversity at 146 sites in the littoral and shallow sublittoral from the Adriatic/Ionian Seas (eastern region) and Ligurian/Tyrrhenian Seas (western region) using a null modelling approach to account for variation in species richness. The distance decay relationship between species turnover within each region and geographic distance by sea was determined using generalised linear models. Mantel tests were used to examine correlations between β diversity and connectivity by ocean currents, estimated from Lagrangian dispersal simulations. Variation in β diversity between sites was partitioned according to environmental and spatial components using a distance-based redundancy approach. Species turnover along a gradient of geographic distance was greater by a factor of 3 to 5 in the western region than the eastern region, suggesting lower connectivity between sites. β diversity was correlated with connectivity by ocean currents at both depths in the eastern region but not in the western region. The influOPEN ACCESS ence of spatial and environmental predictors of β diversity varied considerably between regions, but was similar between depths. Our results highlight the interaction of oceanographic, spatial and environmental processes influencing benthic marine β diversity. Persistent currents in the eastern region may be responsible for lower observed β diversity compared to the western region, where patterns of water circulation are more variable.This work was supported by the European Community’s 7th Framework Programme (FP7/ 2007−2013) under Grant Agreement No. 287844 for the project ‘Towards COast to COast NETworks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential (CoCoNet)’.Peer reviewe

    Are We Predicting the Actual or Apparent Distribution of Temperate Marine Fishes?

    Get PDF
    Planning for resilience is the focus of many marine conservation programs and initiatives. These efforts aim to inform conservation strategies for marine regions to ensure they have inbuilt capacity to retain biological diversity and ecological function in the face of global environmental change – particularly changes in climate and resource exploitation. In the absence of direct biological and ecological information for many marine species, scientists are increasingly using spatially-explicit, predictive-modeling approaches. Through the improved access to multibeam sonar and underwater video technology these models provide spatial predictions of the most suitable regions for an organism at resolutions previously not possible. However, sensible-looking, well-performing models can provide very different predictions of distribution depending on which occurrence dataset is used. To examine this, we construct species distribution models for nine temperate marine sedentary fishes for a 25.7 km2 study region off the coast of southeastern Australia. We use generalized linear model (GLM), generalized additive model (GAM) and maximum entropy (MAXENT) to build models based on co-located occurrence datasets derived from two underwater video methods (i.e. baited and towed video) and fine-scale multibeam sonar based seafloor habitat variables. Overall, this study found that the choice of modeling approach did not considerably influence the prediction of distributions based on the same occurrence dataset. However, greater dissimilarity between model predictions was observed across the nine fish taxa when the two occurrence datasets were compared (relative to models based on the same dataset). Based on these results it is difficult to draw any general trends in regards to which video method provides more reliable occurrence datasets. Nonetheless, we suggest predictions reflecting the species apparent distribution (i.e. a combination of species distribution and the probability of detecting it). Consequently, we also encourage researchers and marine managers to carefully interpret model predictions

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore